Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673895

RESUMO

Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels share similar structures but have opposite gating polarity. Kv channels have a strong coupling (>109) between the voltage sensor (S4) and the activation gate: when S4s are activated, the gate is open to >80% but, when S4s are deactivated, the gate is open <10-9 of the time. Using noise analysis, we show that the coupling between S4 and the gate is <200 in HCN channels. In addition, using voltage clamp fluorometry, locking the gate open in a Kv channel drastically altered the energetics of S4 movement. In contrast, locking the gate open or decreasing the coupling between S4 and the gate in HCN channels had only minor effects on the energetics of S4 movement, consistent with a weak coupling between S4 and the gate. We propose that this loose coupling is a prerequisite for the reversed voltage gating in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Animais , Técnicas de Patch-Clamp , Humanos
2.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752823

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to the rhythmic firing of pacemaker neurons and cardiomyocytes. Mutations in HCN channels are associated with cardiac arrhythmia and epilepsy. HCN channels belong to the superfamily of voltage-gated K+ channels, most of which are activated by depolarization. HCN channels, however, are activated by hyperpolarization. The mechanism behind this reversed gating polarity of HCN channels is not clear. We here show that sea urchin HCN (spHCN) channels with mutations in the C-terminal part of the voltage sensor use the same voltage-sensor movement to either close or open in response to hyperpolarizations depending on the absence or presence of cAMP. Our results support that non-covalent interactions at the C-terminal end of the voltage sensor are critical for HCN gating polarity. These interactions are also critical for the proper closing of the channels because these mutations exhibit large constitutive currents. Since a similar voltage-sensor movement can cause both depolarization- and hyperpolarization-activation in the same channel, this suggests that the coupling between the voltage sensor and the pore is changed to create channels opened by different polarities. We also show an identical voltage-sensor movement in activated and inactivated spHCN channels and suggest a model for spHCN activation and inactivation. Our results suggest the possibility that channels open by opposite voltage dependence, such as HCN and the related EAG channels, use the same voltage-sensor movement but different coupling mechanisms between the voltage sensor and the gate.


Assuntos
Ativação do Canal Iônico , Canais de Potássio , Canais de Potássio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mutação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
3.
Sci Rep ; 12(1): 11078, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773325

RESUMO

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.


Assuntos
Artemisininas , Tratamento Farmacológico da COVID-19 , Armadilhas Extracelulares , Macrófagos , Neutrófilos , Sepse , Animais , Artemisininas/farmacologia , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Tapsigargina/farmacologia
4.
Front Pharmacol ; 12: 705421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267666

RESUMO

Pulmonary arterial hypertension (PAH) is an aggressive vascular remodeling disease that carries a high morbidity and mortality rate. Treprostinil (Remodulin) is a stable prostacyclin analogue with potent vasodilatory and anti-proliferative activity, approved by the FDA and WHO as a treatment for PAH. A limitation of this therapy is the severe subcutaneous site pain and other forms of pain experienced by some patients, which can lead to significant non-compliance. TWIK-related potassium channels (TREK-1 and TREK-2) are highly expressed in sensory neurons, where they play a role in regulating sensory neuron excitability. Downregulation, inhibition or mutation of these channels leads to enhanced pain sensitivity. Using whole-cell patch-clamp electrophysiological recordings, we show, for the first time, that treprostinil is a potent antagonist of human TREK-1 and TREK-2 channels but not of TASK-1 channels. An increase in TASK-1 channel current was observed with prolonged incubation, consistent with its therapeutic role in PAH. To investigate treprostinil-induced inhibition of TREK, site-directed mutagenesis of a number of amino acids, identified as important for the action of other regulatory compounds, was carried out. We found that a gain of function mutation of TREK-1 (Y284A) attenuated treprostinil inhibition, while a selective activator of TREK channels, BL-1249, overcame the inhibitory effect of treprostinil. Our data suggests that subcutaneous site pain experienced during treprostinil therapy may result from inhibition of TREK channels near the injection site and that pre-activation of these channels prior to treatment has the potential to alleviate this nociceptive activity.

5.
Annu Rev Pharmacol Toxicol ; 61: 401-420, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679007

RESUMO

Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.


Assuntos
Anestesia , Preparações Farmacêuticas , Canais de Potássio de Domínios Poros em Tandem , Humanos
6.
Acta Physiol (Oxf) ; 228(2): e13361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31423744

RESUMO

AIMS: The mode of action by which doxapram acts as a respiratory stimulant in humans is controversial. Studies in rodent models, have shown that doxapram is a more potent and selective inhibitor of TASK-1 and TASK-1/TASK-3 heterodimer channels, than TASK-3. Here we investigate the direct effect of doxapram and chirally separated, individual positive and negative enantiomers of the compound, on both human and mouse, homodimeric and heterodimeric variants of TASK-1 and TASK-3. METHODS: Whole-cell patch clamp electrophysiology on tsA201 cells was used to assess the potency of doxapram on cloned human or mouse TASK-1, TASK-3 and TASK-2 channels. Mutations of amino acids in the pore-lining region of TASK-3 channels were introduced using site-directed mutagenesis. RESULTS: Doxapram was an equipotent inhibitor of human TASK-1 and TASK-3 channels, compared with mouse channel variants, where it was more selective for TASK-1 and heterodimers of TASK-1 and TASK-3. The effect of doxapram could be attenuated by either the removal of the C-terminus of human TASK-3 channels or mutations of particular hydrophobic residues in the pore-lining region. These mutations, however, did not alter the effect of a known extracellular inhibitor of TASK-3, zinc. The positive enantiomer of doxapram, GAL-054, was a more potent antagonist of TASK channels, than doxapram, whereas the negative enantiomer, GAL-053, had little inhibitory effect. CONCLUSION: These data show that in contrast to rodent channels, doxapram is a potent inhibitor of both TASK-1 and TASK-3 human channels, providing further understanding of the pharmacological profile of doxapram in humans and informing the development of new therapeutic agents.


Assuntos
Doxapram/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas Recombinantes/química , Insuficiência Respiratória/tratamento farmacológico , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp/métodos , Canais de Potássio de Domínios Poros em Tandem/genética , Insuficiência Respiratória/genética , Insuficiência Respiratória/metabolismo , Medicamentos para o Sistema Respiratório/farmacologia
7.
J Physiol ; 597(4): 1087-1101, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365877

RESUMO

KEY POINTS: The TASK-1 channel gene (KCNK3) has been identified as a possible disease-causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK-1 channels, seen in PAH patients, have a substantially reduced current compared to wild-type TASK-1 channels. These mutated TASK-1 channels are located at the plasma membrane to the same degree as wild-type TASK-1 channels. ONO-RS-082 and alkaline pH 8.4 both activate TASK-1 channels but do not recover current through mutant TASK-1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK-1 channels but does not recover current through mutant TASK-1 channels. ABSTRACT: Pulmonary arterial hypertension (PAH) affects ∼15-50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK-1 (K2P3.1), has been identified as a possible disease-causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild-type (WT) and mutated TASK-1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK-1 channels transiently expressed in tsA201 cells were measured using whole-cell patch clamp electrophysiology. Localization of fluorescence-tagged channels was visualized using confocal microscopy and quantified with in-cell and on-cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK-1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK-1 channels (pH 8.4, ONO-RS-082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK-1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK-1 channels. Thus, novel mutations in TASK-1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK-1 channels. Riociguat enhancement of current through TASK-1 channels could contribute to its therapeutic benefit in the treatment of PAH.


Assuntos
Potenciais de Ação , Hipertensão Pulmonar/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia
8.
J Endod ; 32(12): 1171-3, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17174675

RESUMO

This investigation examined the variability of tip diameter (D0) and taper measurements among four different brands of #30, 0.04 nickel-titanium (NiTi) rotary files (n=15/brand). With all brands, the mean percent D0 difference from the manufacturer's reported (nominal) diameter (Profile GT, 1.73+/-2.03%; Endo Sequence, 3.38+/-3.91%; K3, 4.56+/-2.36%; Profile, 6.13+/-4.07%) indicated that files tended to be larger than the nominal diameter. A 1-factor ANOVA and Tukey's post hoc test revealed a statistically significant difference (p0.05) of brand on the mean percent difference of the measured taper compared to the nominal taper with the majority of measurements at either 0.039 or 0.040 taper.


Assuntos
Instrumentos Odontológicos/normas , Preparo de Canal Radicular/instrumentação , Análise de Variância , Ligas Dentárias , Níquel , Titânio
9.
J Endod ; 32(11): 1081-4, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17055911

RESUMO

The purpose of this investigation was to examine variability of gutta-percha (GP) cone tip diameter (D(0)) and taper among five different brands of #30, 0.04 GP cones (n = 15/brand). Mean percent D(0) difference from the manufacturer's reported (nominal) diameter of Maillefer (-15.42 +/- 7.16%) and Lexicon (-12.76 +/- 4.98%) were significantly different (p < or = 0.05) from Maxima (3.18 +/- 7.06%), Diadent (3.62 +/- 11.37%), and K(3) (7.27 +/- 7.84%), which were not significantly different from each other but exhibited diameters larger than the nominal diameter as indicated by positive values. Mean taper percent difference of Maxima (-3.00 +/- 3.80%) was significantly different (p < or = 0.05) from Lexicon (3.67 +/- 3.64%) and Maillefer (6.67 +/- 3.49%), with comparisons to Diadent (-0.17 +/- 6.37%) and K(3) (1.50 +/- 6.93%) not significantly different (p > 0.05) from each other or any other brand. Based on the evidence, there is significant variability between GP cone brands for both diameter and taper, with Maxima and Diadent, respectively, exhibiting the smallest mean difference from manufacturer's nominal tip diameter and taper. However, the high standard deviation values associated with most of the diameter and taper differences from nominal values also suggest high variability within individual brands.


Assuntos
Guta-Percha/química , Materiais Restauradores do Canal Radicular/química , Guta-Percha/normas , Humanos , Teste de Materiais , Materiais Restauradores do Canal Radicular/normas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA